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ABSTRACT

The objective of the Redesign Challenge of the Bio+MedVis Chal-
lenge @ IEEE VIS 2024 is to redesign an existing visualization of
multi-cell gene expressions of tissue samples. In this, multiple cells
are accumulated into pixels. For each pixel the visualization should
convey the prevalence and extent of cell types it is composed of, i.e.,
a proportional relation. The provided baseline technique of super-
imposed Pie charts – a common technique for this kind of relation
– is not an ideal choice as the cell-type quantities of neighboring
pixels are hard to compare due to a spatial disarray inherent to pie
charts. This limits the perception of regions with coherent cell-type
compositions, which constitutes one of the essential visual analytics
tasks. We propose a novel marker design:Droplets– a space-saving
design for visually enhancing the presence of clusters and regional
borders. We evaluate this concept for the given tissue sample and
compare it to the given baseline and other alternatives.

Index Terms: Association, Gestalt laws, Small multiples, Glyphs.

1 INTRODUCTION

The STdeconvolve[4] accurately recovers cell-type proportions in
multi-cellular spatial transcriptomic (ST) tissue pro�ling. Miller et
al. [4] present a visualization where the components of the decon-
volved cell-types pixels are illustrated as pie charts (Fig. 2a1) – a
standard visualization for proportional relations. They can be su-
perposed to the respective hematoxylin and eosin (H&E) stain, as
the locations of pixels is given by the center of each circle. I.e., the
visualization has to convey two vital types of information: locations
and proportions. One of the fundamental tasks of visual analytics
is to recognize coherent areas of homogeneous cell-type composi-
tions, a quest that is inherently dif�cult by comparing pie charts,
as quantities are not aligned across pie charts. With the words of
Tufte [9]: “[...] the only worse design than a pie chart is several of
them, for then the viewer is asked to compare quantities located in
spatial disarray both within and between pies [...].”

Other examples for visualizing part-to-whole relationships are
bar charts, stacked bar/column charts or treemaps. While suitable
for the comparison of quantities between locations, bar charts come
with the obvious downside that they exhibit a suboptimal shape
for conveying locality, since it is dif�cult for humans to perceive a
chart's center (Fig. 2b). Also their layout poorly uses the available
space and does not scale well for a larger number of components.
Stacked bar/column charts can be visualized with a quadratic de-
sign (Fig. 2c), which �xes this issue. Yet, also with this design we
observe a level of spatial disarray of quantities, making it hard for
viewers to spot homogeneous regions. Also, in regions with mul-
tiple equally strong quantities it is comparably dif�cult to decipher
their respective contributions. Yet another common visualization
for displaying proportional relations aretreemaps(Fig. 2d). This
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Figure 1: Original small multiples cell type visualization with pie
charts (left) next to our proposedDropletsdesign (right).

layout makes optimal use of the available space, which is itera-
tively split into regions re�ecting the quantities' respective contri-
butions. While it is a very helpful design for a single ST pixel, using
treemaps in a small multiples visualization leads to a very turbulent
looking result. The spatial disarray is even aggravated through the
sorting of quantities. In summary, none of the baseline visualiza-
tions for proportional relations leads to a substantial improvement
for the problem at hand. More advanced approaches for displaying
small multiples in their spatial context exist [7, 5], but they are not
applicable for showing proportional relations.

We propose a design (Fig. 1) which optimally uses the available
space, being as translucent as possible (so that the underlying H&E
image can be perceived), while still conveying the proportional in-
formation. Additionally the component markers should visually re-
�ect their association to local clusters.

2 PROPOSED DESIGN

The essential idea of our proposed design is to visualize the differ-
ent cell-type contributions as separated, yet tightly-packed, smooth
shapes which re�ect both a component's contribution and its be-
longing to local accumulations. To this end, a circular base shape is
equipped with a protruding spike (tail) pointing towards the center
of such a local cluster (Fig. 3, right), with the length of this spike re-
�ecting the size of the respective cluster. This is in accordance with
the Gestalt principles ofContinuityandCommon Fate. Continuity
states that viewers group elements that seem to follow a continu-
ous path – in our case towards a local accumulation. Common Fate
refers to viewers' tendency to group elements which seem to move
in a common direction. This marker design emphasizes latent bor-
ders of regions with similar cell-type contributions (Fig. 3, left) and
facilitates the recognition of – otherwise invisible – coherent re-
gions. The idea is inspired by the winglets analogy by Lu et al. [3]
for scatter plots, where each point is �tted with dual-sided trails,
re�ecting the af�liation con�dence to a cluster and protruding per-
pendicular to the direction of the respective cluster. However, to
allow for a tight packing we opt for said protruding spike as op-
posed to such dual-sided trails.

Regarding the positioning of the individual components within



a ST pixel, we intend to arrange them such that they appear to
be “drawn towards” their belonging local cluster centers (if any
are present). This ensures both that components' markers are
closer to their respective clusters and that their tails are unlikely
to obfuscate other markers, while still maintaining a tight pack-
ing. This requires precise knowledge of the prevalence and the
direction of the nearest local cluster. Letf pdg � R2 be the set
of ST pixels, with the index setd 2 D, andk 2 K be the index set
of cell-types. The center (and thus the direction to) a cluster for
a componentk can be obtained with the multivariateL1 median,
the pointq = argminxf å d2Dkpd � xkg, which minimizes the Eu-
clidean distance to all pointsf pdg. As we do not want to compute
the globalL1 but a localized version, we employ a variant of the
Locally Optimal Projection (LOP) by Lipmann et al. [1], giving
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d0q(kpd0� pdk)
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� pd, for the directivity of component

k in ST pixel d, with wk
d as componentk's contribution to pixel

d. Locality is introduced through the fast decaying weight function
q. Ñk

d also contains the information how pronounced the directiv-
ity to a cluster is, which is used for the eccentricitya µ jÑk

dj of a
marker's tail. The circular base shape with radiusrk

d is extended
with two circle arcs meeting at the point with distancea in direc-
tion of Ñk

d (Fig. 3, right). There are different options for de�ning
a marker's radius, as there are three distinct retinal variables that
encode a component in a pie chart: angle, area of the circle wedge,
and arc length. While it has been shown that the angle is the least
important visual cue, the arc length and area exhibit similar accu-
racy in terms of understanding [6]. As a consequence, the latter
two have been evaluated (rk

d µ wk
d andrk

d µ (wk
d)1=2, respectively),

with the area preserving option (used in all subsequent experiments)
leading to substantially more expressive layouts.

The placement of the component markersf mk
dg within a pixel

d is achieved through a physical simulation of multiple simulta-
neously acting forces (fff col � fff g > fff Ñ): (i) a gravitational force
fff g � ggg pulling them towards the pixel's center, withggg as the grav-
itational acceleration; (ii) a fast decaying collision forcefff col �
å k02Knf kg(mk

d � mk0
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d )� 1, and (iii) a
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dmk
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cluster center (Fig. 3, middle). Initially the circular markers are
placed at an offset from the pixel's center relative to theirÑk

d, be-
fore their positions are iteratively re�ned by applying said forces.
In most cases this leads to a blossom-like arrangement with differ-
ently large and elongated petals, facing away from the pixel center.

3 FIRST RESULTS AND DISCUSSION

We evaluate our proposed design both with circular- and droplet-
shaped markers.Fig. 4 shows the respective results in comparison
with the original pie chart design. Column (a) features the spot
cell-types and (b) the spot cell-types superimposed onto the H&E
image. Already from the macro perspective in column (a) and (b),
it is apparent that our proposed design reveals several �ne-grained
intensity structures which are latent in the pie charts layout, such
as the turquoise X5 cell-types, present all around the border, or the
violet and pink marblings of the X8/X9 cell-types to the top and
left borders of tissue sample. A closer inspection of the regions
where homogeneous cell-type compositions border each other (col-
umn (c)), clearly demonstrates the advantage of our design. This
part of the tissue exhibits a coherent region dominated by the red
X1 cell type, which encases a cluster of the green X4 cell type.
To the top and right we observe an area dominated by the X5 cell
type which is intersected with a streak, composed in equal parts of
X3 and X9 cell type. This also correlates with darker marbling in
the H&E image. Even though this information can also be derived
from the original pie chart visualization, our proposed design con-
veys this information more ef�ciently with less visual disturbance.

In cases, where a dominant cluster has offshoots into neighboring
regions – such as the X1 cell type cluster in (d) – the droplets shape
lead to a more pronounced cluster outline, in accordance with the
Common FaithGestalt principle.

4 NEXT STEPS AND FURTHER IMPROVEMENTS

For a proof-of-concept, visualizations were generated with a Python
script2 without optimization in mind. The implementation runs fast
on commodity hardware but will need further improvements regard-
ing ef�ciency if the concept is to be applied in real-time on tissue
data. To this end, many approaches such as parallelization or ap-
proximation are possible. The iteratively generated force layout can
be optimized withearly stoppingor similar schemes, be replaced by
an approximate algorithmic approach altogether.

Another target for improvement is the employed color scheme.
The provided color scheme contains easy-to-confuse color pairs,
such as for components X4/X5 or X8/X9. The latter are also hard
to discern from the underlying H&E diagram, which features a sim-
ilar colorization. Hence, future tasks will include the improvement
of the color scheme with strategies for enhancing the distinguisha-
bility of adjacent color complexes [2] (Fig. 5).

Besides improvements of the marker design, we have yet to
explore dynamic/interactive concepts such as �lters, which limit
the visibility of certain components or balance the opacity of both
droplets and H&E image, or interactive lenses [8]. Combined with
a perception-centered usability testing, investigating such concepts
constitute our next research efforts.
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(a) Reference: Pie Charts (b) Bar Charts

(c) Stacked Bar Charts (d) Treemaps

Figure 2: Common alternatives for visualizing proportional relationships – besides (a) Pie Charts – include (b) Bar Charts, (c) Stacked Bar
Charts or (d) Treemaps. All of them are evaluated on the given tissue sample with cell-type components X1 to X9.

Figure 3: Left: pixel components of two symbolic clusters (blue and orange) strive towards their respective cluster centers as, indicated by
their respective tails. Middle: different forces simultaneously act upon each droplets marker, typically resulting in a blossom pattern for a ST
pixel. Right: the eccentricitya, responsible for the droplets shape is governed by the prevalence and manifestation of component clusters.



(a) Spot cell-types (b) Spot cell-types + H&E Image (c) Closeup Lense A (d) Closeup Lense B
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Figure 4: Original cell-type visualization with pie charts (top row) and our proposed redesign with circular markers (2nd row) and the droplets shape (3rd row). The columns show the (a)
spot cell-types of the tissue as a whole, the (b) spot cell types of the tissue as a whole superimposed to the H&E image and two close-ups on signi�cant regions (columns (c) and (d)). The
same colormap as inFig. 2ais used.



Figure 5: Left: pairs of easy-to-confuse colors (X4/X5 or X8/X9) are challenging to discern type contributions if they appear together (see,
e.g., closeup). Right: using a alternate color scheme can prohibit similar colors bordering each others and reveal otherwise-hard-to-see
structures, such as with the green and turquoise cell-type components in the lower right part of the tissue.
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